US3 protein kinase of HSV-1 cycles between the cytoplasm and nucleus and interacts with programmed cell death protein 4 (PDCD4) to block apoptosis.
نویسندگان
چکیده
The U(S)3 protein kinase of herpes simplex virus 1 plays a key role in blocking apoptosis induced by viral gene products or exogenous agents. The U(S)3 protein kinase is similar to protein kinase A with respect to substrate range and specificity. We report that in the yeast two-hybrid system a domain of U(S)3 essential for antiapoptotic activity reacted with programmed cell death protein 4 (PDCD4). We report that U(S)3 interacts with PDCD4, that PDCD4 is posttranslationally modified in infected cells both in a U(S)3-dependent and -independent fashion, and that depletion of PDCD4 by siRNA blocked apoptosis induced by a Δα4 mutant virus. In infected cells, PDCD4 accumulates in the nucleus, whereas U(S)3 accumulates in the cytoplasm. Studies designed to elucidate the convergence of these proteins led to the discovery that U(S)3 protein kinase cycles between the nucleus and cytoplasm and that U(S)3 retains PDCD4 in infected cell nuclei.
منابع مشابه
The HSV-1 Us3 protein kinase is sufficient to block apoptosis induced by overexpression of a variety of Bcl-2 family members.
The Us3 protein kinase encoded by herpes simplex virus type-1 (HSV-1) suppresses apoptosis in infected cells and is sufficient to block apoptosis induced by overexpression of Bad [Proc. Natl. Acad. Sci. 98 (2001) 10410]. While Us3 can induce phosphorylation of Bad, phosphorylation of Bad is dispensable for Us3 anti-apoptotic function [J. Virol. 77 (2003) 6567]. We extend the findings with Bad t...
متن کاملIn vitro Interaction of HSV-1 ORF P with Both Thymidine Kinase (TK) and an Unidentified Cellular Protein
Herpes simplex virus type-1 (HSV-1) is a neurotropic pathogen of humans that establishes latent infection in the sensory ganglia innervating the site of primary infection. A number of genes control HSV-1 pathogenicity and latency. Open reading frame P (ORF P) is one of these genes that might have a role in latency and pathogenesis. A complication in the analysis of the role of ORF P in the HSV-...
متن کاملRegulatory effects of programmed cell death 4 (PDCD4) protein in interferon (IFN)-stimulated gene expression and generation of type I IFN responses.
The precise mechanisms by which the activation of interferon (IFN) receptors (IFNRs) ultimately controls mRNA translation of specific target genes to induce IFN-dependent biological responses remain ill defined. We provide evidence that IFN-α induces phosphorylation of programmed cell death 4 (PDCD4) protein on Ser67. This IFN-α-dependent phosphorylation is mediated by either the p70 S6 kinase ...
متن کاملAkt phosphorylates and regulates Pdcd4 tumor suppressor protein.
Programmed cell death 4 (Pdcd4) is a tumor suppressor protein that interacts with eukaryotic initiation factor 4A and inhibits protein synthesis. Pdcd4 also suppresses the transactivation of activator protein-1 (AP-1)-responsive promoters by c-Jun. The Akt (protein kinase B) serine/threonine kinase is a key mediator of phosphoinositide 3-kinase pathway involved in the regulation of cell prolife...
متن کاملProgrammed cell death protein 4 down-regulates Y-box binding protein-1 expression via a direct interaction with Twist1 to suppress cancer cell growth.
Programmed cell death protein 4 (PDCD4) has recently been shown to be involved in both transcription and translation, and to regulate cell growth. However, the mechanisms underlying PDCD4 function are not well understood. In this study, we show that PDCD4 interacts directly with the transcription factor Twist1 and leads to reduced cell growth through the down-regulation of the Twist1 target gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 35 شماره
صفحات -
تاریخ انتشار 2011